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Thermally generated phenylcarbenium ions: acid-free and
self-quenching Friedel–Crafts reactions
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Abstract—2-Benzyloxy-1-methylpyridinium triflate (1) serves as a stable precursor to a phenylcarbenium species as evidenced by its
reactivity in Friedel–Crafts alkylations with electron-rich arenes.
� 2007 Elsevier Ltd. All rights reserved.
The recognized importance of carbocations in organic
chemistry1 dates back to when Ingold and Hughes first
described them as intermediates in the SN1 reaction.2,3

Carbocations play a crucial role in many important
reactions including Friedel–Crafts alkylations (e.g.,
Scheme 1) and acylations,4 Prins reactions,5 pinacol
rearrangements,6 Nazarov cyclizations,7 Ritter reac-
tions,8 Mukaiyama aldol couplings,9 and others.

Carbocations are frequently used to facilitate key steps
in natural products synthesis. For example, Johnson’s
synthesis of progesterone features an elegant cascade
cation–p cyclization to assemble the steroid core.10,11

Modern synthetic approaches to the ‘ladder’ polycyclic
polyethers focus on conceptually related cascade
cation–epoxide cyclizations.12–14 Such studies require
means of generating cation initiators to trigger cycliza-
tion under conditions that is compatible with the rest
of the molecule.

For synthetic purposes, carbenium ions (trivalent carbo-
cations) are typically generated from aldehydes, alcohols,
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Scheme 1. Lewis acid-promoted carbocation formation with accom-
panying Friedel–Crafts alkylation.4
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olefins, and alkyl halides using strong activators like
Lewis or protic acids.15 Olah contributed significantly
to this field with his development of ‘superacid’ sol-
vents,16 which make it possible to prepare free carbo-
cations that are too reactive to exist in less acidic
media.17 In general, however, the need for acidic media
limits the range of functional groups that are compatible
with traditional methods for generating reactive carbe-
nium species.

Alternatively, newer methods involving thermal decom-
position of N-alkyl, N-nitrosamides18 or photolysis of
diazonium salts19–21 circumvent the need for strong acid
activators, but these methods require the use of danger-
ous or unstable starting materials. Furthermore, the
reaction of a cation with a neutral arene nucleophile
generates a strongly acidic by-product (e.g., HAlCl4,
Scheme 1).
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Our group recently reported the synthesis of benzyl
ethers via thermolysis of 2-benzyloxy-1-methylpyridini-
um triflate (1)22 in the presence of alcohols (Eq. 1).23

We postulated an SN1-type mechanism proceeding
through a phenylcarbenium triflate salt.
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Given the broader importance of generating reactive
intermediates under neutral conditions, our new study
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Scheme 2. Proposed mechanism of the Friedel–Crafts reaction of 1

with electron-rich arenes.
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aims to determine if 1 indeed serves as a stable, pre-acti-
vated source of phenylcarbenium by exploring Friedel–
Crafts benzylation reactions24 under conditions that
do not involve the addition of acid or other activating
agent (Eq. 2).

Herein we report data and observations on the thermol-
ysis of 1 in the presence of various arenes, which in most
cases afforded characterizable Friedel–Crafts-type
products.25
Table 1. Reaction of 1 with electron-rich arenes25
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a Yields refer to isolated product judged to be >95% pure by 1H NMR spect
the literature reports.

b Regioisomer ratios estimated by 1H NMR.31

c Magnesium oxide (MgO, 1.0 equiv) added as the terminal acid scavenger.
d Reaction conducted in trifluorotoluene (PhCF3, 1.0 mL/mmol of 1) as solv
The mechanistic rationale is outlined in Scheme 2:
thermolysis of 1 was expected to release the benzyl elec-
trophile transiently along with pyridone 2. Then, the
reaction of an arene substrate with phenylcarbenium
would furnish 4. The strong acid by-product (in this
case, triflic acid) would be buffered by pyridone 2
through the formation of 5. Note that the hydroxypyrid-
inium species (5) is 10 or more orders of magnitude less
acidic than triflic acid: pKa (TfOH) = �10 to �15,26

whereas pKa (5) = 0.30.27

Electron-rich arenes such as anisole or 1,3-dimethoxy-
benzene efficiently trapped the putative phenylcar-
benium species to provide the corresponding
diarylmethanes in excellent yields (Table 1), whether
the reaction is conducted neat or in an inert aromatic
solvent (cf. entry 2). As indicated in entry 2, productive
Friedel–Crafts reactions occur even under non-acidic con-
ditions (i.e., buffered with magnesium oxide). Less acti-
vated arene substrates provided more modest yields
(entries 5–8).

Interestingly, the reaction between 1 and N,N-dimethyl-
aniline took a different course: one of the methyl groups
was replaced with a benzyl group to yield N-benzyl, N-
methylaniline (entry 9).28 We draw an analogy between
the N-methyl!benzyl exchange that we observed (entry
ED
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9) and the O-methyl!benzyl exchange detailed by
Speranza and co-workers.29 Other labs have reported
similar but less dramatic observations of heteroatom
substitution products under conventional Friedel–Crafts
conditions.30

Based on these results, we conclude that a reactive ben-
zyl electrophile is generated upon mild thermal activa-
tion (ca. 80 �C) of 1. Benzyloxypyridinium triflate 1 is
unique among phenylcarbenium precursors: it is neutral,
pre-activated, stable at room temperature, and can be
stored and handled without special precautions. The
reactive electrophilic species is produced alongside N-
methyl-pyridone (2), which can act as an acid scavenger
(2!5) to moderate the acidity of the reaction.

In summary, 2-benzyloxy-1-methylpyridinium triflate
(1) decomposes upon heating to release a phenylcar-
benium species, as evidenced by its efficient Friedel–Crafts
alkylations of electron-rich arenes.32 These reactions do
not require strong Lewis or protic acids, in contrast to
the classical conditions for Friedel–Crafts reactions,
and can even be conducted in the presence of hetero-
geneous base (MgO). Stable species that produce carbo-
cations under mild, neutral conditions contribute to the
study of reactive intermediates in organic chemistry and
their potential applications in synthesis.
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